
Where GO is going and what it means for
ontology extension

Catia Pesquita and Francisco M. Couto
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Abstract. Developing and maintaining a biomedical ontology is a time
and effort-consuming task, given the dynamic and expanding nature of
biomedical knowledge. This is a relevant issue for very large ontologies
which cover a broad domain, for smaller ontologies maintained by a small
team and also for domains where being able to perform quick updates is
critical (e.g. epidemiology).
The first step in the process of extending an ontology is identifying the
areas of the ontology that need to be changed - change capturing. In this
paper we propose that this process can be semi-automated by exploring
ontology information. This would be a valuable tool to support ontology
developers in ontology extension, easing their burden.
In order to accomplish this, we have developed a framework for analysing
the extension of ontologies, to create a general panorama of ontology ex-
tension processes that can guide the development of change capturing
techniques. We have applied it to the analysis of the extension of the
Gene Ontology and uncovered some of the underlying tendencies in its
extension. Building upon the results of this analysis and a set of guide-
lines for ontology change capturing, we then investigated the feasibility
of prediciting which classes of the ontology will be extended in a future
version.
Finally, we discuss the obtained results and indentify the main chal-
lenges and future directions for the budding area of ontology extension
prediction.
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1 Introduction

The development of a biomedical ontology is a very demanding process that
requires both expertise in the domain to model and in ontology design. It is
also necessarily an iterative process [10] since biomedical knowledge is diverse,
complex and continuously changing and growing. This process, usually named
ontology evolution, requires large investments of both time and money with each
new ontology version that is produced.

Ontology evolution can be defined as the process of modifying an ontology
in response to a certain change in the domain or its conceptualization [6]. These
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include changes in the portion of the real world they model, the uncovering of in-
formation previously unavailable, a reassessment of the relevance of some element
to the ontology or a need to correct previous mistakes [4]. In the last couple of
years, a generally agreed upon model for ontology evolution has emerged, which
includes four distinct steps: (1) requesting the change, (2) planning the change,
(3) implementing the change and (4) verification and validation (for a review
see [8]). The changes made in the course of ontology evolution can be of three
elementary types: addition, removal and modification [13]. We define ontology
extension as the process of ontology evolution concerned with the addition of
new elements. We consider ontology extension to encompass both ontology re-
finement (the addition of new classes to an ontology) and ontology enrichment
(the addition of non-taxonomical relations or richer axioms).

Before these changes are actually performed, the need for the change must
be identified. This is the first step in ontology evolution, the change capturing
phase [12], and it can be based on explicit or implicit requirements [5]. Explicit
requirements correspond to those made by the ontology developers or to requests
made by end-users. Implicit requirements correspond to those that can be un-
covered by change discovery. Stojanovic et al. [13] list a series of guidelines for
change capturing, organized into three types according to the kind of data they
exploit, to which Castaño et al.[2] add a fourth:

structure-driven: which are derived from the structure of the ontology, e.g.
‘A class with a single subclass should be merged with its subclass’.

data-driven: which correspond to implicit changes in the domain and are dis-
covered through the analysis of the instances belonging to the ontology, e.g.
‘A class with many instances is a candidate for being split into subclasses
and its instances distributed among newly generated classes’.

usage-driven: which are deduced from the usage patterns of the ontology in
the knowledge management system e.g. classes that have not been retrieved
in a long time might be out of date.

discovery-driven: which is applied when a new instance cannot be described
by the ontology classes, and new classes are identified using external re-
sources.

These changes can in principle be semi-automatically discovered by analyzing
the ontology data and its usage. This process can be cast in terms of a prediction
of ontology extension and can represent a significant contribution to easing the
burden of keeping an ontology up-to-date.

The main application of a methodology to predict ontology extension is to
support manual or semi-automated ontology extension, since it can minimize the
effort in collecting and crossing the information necessary to make the extension
decisions. It can contribute to the evolution of larger ontologies by helping to
pinpoint the areas that are in need of attention and also to smaller ontologies,
where team size and resources may not be as large, by reducing the time and
effort spent. It can also provide valuable assistance when there is an urgent need
to extend an ontology to cover a new aspect, such as in the case of an epidemics,
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where the inclusion of new classes in a timely fashion can improve the perfor-
mance of data analysis methods [11]. Furthermore, they can be incorporated into
automated and semi-automated ontology extension systems, which so far have
not addressed this issue [7][9][14].

To guide the development of methods for automated prediciton of ontol-
ogy extension it is of interest to analyze the extension of ontologies. In [4], a
methodology for calculating the improvements obtained in successive versions
of biomedical ontologies based on the matches and mismatches between them
is proposed. It has been used to calculate the degree of correctness of the Gene
Ontology (GO) terminology and to forecast how this overall quality will improve
[3]. In this detailed analysis of the evolution of GO 75% of the changes made
to classes were identified as being insertions. However this study has a strong
focus on error correction, which includes not only the addition of new elements,
but also their removal: of the 17 parameters used, only two correspond to the
absence of elements that should be included in the ontology. Furthermore, the
method does not take into account the hierarchical level at which the error is
made, nor does it consider GO annotations.

In this paper we present a preliminary framework for analysing the extension
of an ontology, and apply it to the analysis of GO. We have chosen GO for our
study because it presents a very interesting case: it is the most prominent bio-
ontology, with widespread use and impact; it covers a considerable wide domain;
it provides a corpus of annotations and it is updated on a frequent basis, thus
supporting the investigation of its evolution through the analysis of different
versions. Building upon the analysis of ontology extension, we then investigate
the feasibility of predicting the evolution of GO. Since GO authors do not justify
the addition of new elements, we based our predicition in a set of rules derived
from the guidelines for ontology change capture. We were interested in evaluating
the suitability of these guidelines as a support for ontology extension prediction.
Finally, we discuss the novel area of ontology extension prediction, its challenges
and role in the future of ontology development.

2 A Framework for Analyzing Ontology Extension

An analysis of ontology extension should by definition, focus on both refinement
and enrichment, and analyze several versions of the same ontology during a time
period. The decision on the time period to analyze should be based on the age
of the ontology as well as the availability and frequency of new version releases.

For analyzing ontology refinement we propose inspecting three key aspects:

1. depth of new classes, i.e. minimum distance to the root class over is a and
part of relations.

2. number of new classes that are children of existing vs. newly added classes
3. number of new classes that are children of leaf classes

The first and third aspects capture the general direction of the refinement of
the ontology, where additions at a greater depth and to leaf classes represent
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vertical extension whereas additions at middle depth and to non-leaf classes
represent horizontal extension. These aspects are helpful to analyze the level of
detail and coverage provided by the refinement. The second aspect is related to
another interesting characteristic of refinement, whether new classes are inserted
individually or whether as part of a new branch.

For analyzing ontology enrichment we propose investigating the following:

4. age and depth of the classes linked by the new relation (i.e. whether the
relation is established between old classes, between an old and a new class
or between new classes)

This aspect is intended to capture first at what level of specificity do the enrich-
ment events take place, and secondly if enrichment happens alongside refinement
or if it succeeds it.

2.1 Analyzing the Gene Ontology Extension

Based on the aspects identified in the previous section, we have analyzed 12
versions of the Gene Ontology and its annotations equally spaced over a period
of 6 years (2005-2010). At 6 month intervals, new classes represent about 5% of
all classes in the ontology. In the context of GO, enrichment corresponds to the
insertion of new non is a relations between existing or newly inserted classes.

Figures 1, 2, 3 and 4 show the results of the analysis of each aspect. In
all three hierarchies, the majority of new subclasses are added as children of
non-leaf classes, resulting in a prevalence of horizontal extension. Also, the re-
finement of molecular function and cellular component occurs mostly via single
insertions, whereas in the biological process groups of related classes are inserted
together. Regarding enrichment, in biological process, a considerable portion of
relations are established between two newly inserted classes, whereas in cellular
component, the majority is made between an existing and a new class.
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3 Predicting Ontology Extension: a rule-based approach

Adapting and extending the guidelines proposed by [13] following [10] that are
concerned with ontology extension, we recognize two heuristics to identify po-
tential ontology extensions and classify them according to the type of data they
use:

1. structure-driven: If a class has fewer children than its siblings, it may be a
candidate for extension

2. data-driven: A class with many instances is a candidate for being split into
subclasses and its instances distributed among newly generated classes.

Following the above mentioned guidelines we have devised a set of rules to
apply to the prediction of the extension of GO. The rules aim at finding a
partition of the set of classes that best separates classes that will be refined in a
future version from those that will not. Here, we assume that the latest ontology
version is believed to be as correct and complete as possible [4]. We have three
types of rules, one structure-based and two data-based. The structure-based rules
are derived from guideline 1:

Rule 1: A class with at most less x% subclasses than its siblings is a candidate
for refinement

with x taking four evenly spaced values between 25 and 100%. The data-based
rules are derived from guideline 2 but distinguish between the set of all annota-
tions and the set of manually curated ones:

Rule 2: A class with at least more x% annotations than its siblings is a candi-
date for refinement
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Fig. 3. Ancestry of new classes (existing or new parents) by ontology version

Rule 3: A class with at least more x% manual annotations than its siblings is
a candidate for refinement

with x taking four evenly spaced values between 100 and 250%.

Distinguishing between these two sets of annotations is very relevant in the
context of GO, since the set of manual annotations contains only those that
have been reviewed by a curator and can therefore be considered more reliable.
Nevertheless, only about 3% of all annotations are manual which means they
provide a narrower coverage.

We applied these rules to classes across the 12 ontology versions. To accom-
plish this, we checked how well the two sets of classes created by the application
of each rule, reflected the sets of classes that were refined and not refined in a
future version at 6 months, 1 and 2 years. To evaluate the predictive power of the
rules, we computed the number of true positives, true negatives, false positives
and false negatives, and used the following indicators:

precision = tp
tp+fp recall = tp

tp+fn

f −measure = 2 × precision×recall
precision+recall

Table 1 shows these results for refinement in 6 months 1 for the values of x that
generated the best results.

Although these results are overall poor, there is a marked difference between
the performance of structure and data-based rules, with data-based rules having
a higher precision for all 3 hierarchies and a higher recall in molecular function.

1 results for 1 and 2 years were similar - data not shown
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shown, since it contains less than 10 non is a relations.

We also applied these rules to prediciting the refinement for ontology branches
as a whole, as opposed to the previous strategy that predicted refinement for in-
dividual classes. This follows from the observation that many of the new classes
inserted in the biological process hierarchy are inserted as part of small subgraphs
rather than single insertions. We focused on the subgraphs that are rooted on
classes at a depth of 4 due to the fact that most extension events occur at this
depth or lower. However, the results obtained were comparable to those gener-
ated by predicting for individual classes.

4 Discussion

The application of our framework for ontology extension analysis to GO has
yielded some interesting results. Firstly, the majority of new classes are not
added to leaf classes, resulting in a horizontal growth of the ontology. This
means that GO is not adding increasingly specific classes but rather fleshing
out. Secondly, we have identified that in GO refinement happens by two major
modes: individual insertions and group insertions. The first occurs frequently in
all GO hierarchies, whereas the second is only common in the biological process
hierarchy. This is in line with the fact that most of GO’s special interest groups
belong to the biological process area and their work is more focused on modelling
portions of their areas of interest rather than making individual insertions. We
are aware that our usage of path-based depth to define the sub-graphs of GO
that are subject to extension, can suffer from bias, since terms at the same
depth do not necessarily express the same degree of specificity [1]. However, we
have decided to use path-based depth, since we needed to create sub-graphs
independently of their number of annotations, so as not to introduce a bias to
our annotation based rules.
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Biological Process

Rule Precision Recall F-measure

1 (x = 75%) 0.0772 ± 0.0317 0.364±0.0802 0.127±0.0479

2 (x = 200%) 0.220±0.0185 0.318±0.0638 0.256±0.0128

3 (x = 200%) 0.242±0.0302 0.380±0.0507 0.292±0.01714

Cellular Component

Rule Precision Recall F-measure

1 (x = 75%) 0.0270±0.0228 0.381±0.206 0.0501± 0.0406

2 (x = 200%) 0.119±0.109 0.212±0.246 0.149 ±0.148

3 (x = 200%) 0.199 ±0.121 0.374±0.259 0.252 ± 0.156

Molecular Function

Rule Precision Recall F-measure

1 (x = 75%) 0.0122±0.0033 0.223±0.0908 0.0230±0.0060

2 (x = 200%) 0.101±0.0388 0.406 ±0.0357 0.157 ±0.0492

3 (x = 200%) 0.123 ±0.0515 0.526±0.0573 0.194±0.0672

Table 1. Prediction results for the refinement of the Gene Ontology at 6 months.
Shown values are averaged over all ontology versions, resulting from a total of 11 runs.

This refinement by branches in the biological process hierarchy is also cap-
tured by the enrichment analysis, where there is a high proportion of new en-
richment relations that are established between new classes.

Theoretically, these two modes of refinement should impact semi-automated
change capturing methods, hence we applied the rules for both individual and
branch extension predicition. However such impact was not visible, likely due to
the poor performance obtained.

These results emphasize that the current proposed guidelines for capturing
change based on structure and data are not appropriate for handling a large and
complex ontology such as the Gene Ontology. We are aware that the guidelines
represent an effort to ensure a balanced structure for the ontology, and that given
the size and evolving nature of the domain GO covers, its extension cannot be
governed alone by these precepts. In fact, GO’s Ontology Development group 2

has highlighted the processes used in the identification of areas that need to be
developed:

– by working closely with the reference genome annotation group to ensure
that areas that are known to undergo intense annotation in the near future
are updated

– by listening to the biological community
– by ensuring that emerging genomes have the necessary classes to support

their needs

If GO’s change management regarding extension were to be made explicit, for
instance as is the case for making a term obsolete where the reason is given, we

2 http://wiki.geneontology.org/index.php/Ontology Development group summary
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could perform a more in-depth analysis and perhaps derive more accurate rules.
Nevertheless we have obtained better results using the number of annotations
rather than the number of subclasses, which may be related to the fact that
GO development is driven by need, which can be approximated by the rate of
annotation, rather than by a process of homogeneization of structure. In fact,
this difference was to be expected considering that in GO’s domain the level of
specificity of each branch is dependent on natural and scientific phenonmena,
which prevents the existance of an homogenous structure to the ontology. Such
structure-based guidelines are however expected to function better in ontologies
that follow a more conceptual approach.

In trying to predict ontology extension, particularly in the case of large
biomedical ontologies, we are facing a multitude of variables, not only the ad-
vancement of biomedical knowledge and the current state of the ontology itself
but also social and technical aspects. The extension of biomedical ontologies
occurs via several different processes, and motivated by distinct needs, which
cannot be apprehended by a ’one size fits all’ rule. We believe that to handle
this complexity, we need to employ more sohpisticated techniques, that are able
to handle numerous variables and more complex relations between them.

Therefore we are currently working on a supervised learning methodology
to support the prediciton of ontology extension that explicitly addresses these
issues.

We believe that the future of ontology development will necessarily incorpo-
rate the automation of some of its processes, mainly those that are tedious and
time-consuming, releasing ontology experts to focus on core modelling issues.
We have outlined one of these processes, semi-automated change capturing via
prediction of ontology extension and presented some of the issues and challenges
in this budding field.
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